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Biological Networks 



Graphs 

A B 

•  Nodes 
–  People, Proteins, Genes, Neurons, Sequences, Numbers, … 
 

•  Edges 
–  A is connected to B 
–  A is related to B 
–  A regulates B 
–  A precedes B  
–  A interacts with B 
–  A activates B 
–  … 
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Kevin Bacon and Bipartite Graphs 
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BFS and TSP 
•  BFS computes the shortest path between a 

pair of nodes in O(|E|) = O(|N|2) 

•  What if we wanted to compute the shortest 
path visiting every node once? 
– Traveling Salesman Problem 
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ABDCA: 4+2+5+3 = 14 
ACDBA: 3+5+2+4 = 14* 
ABCDA: 4+1+5+1 = 11 
ADCBA: 1+5+1+4 = 11* 
ACBDA: 3+1+2+1 = 7 
ADBCA: 1+2+1+3= 7 * 



Greedy Search 
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Greedy Search 
Greedy Search 
cur=graph.randNode() 
while (!done) 

 next=cur.getNextClosest() 
 
Greedy:  ABDCA = 5+8+10+50= 73 
Optimal:  ACBDA = 5+11+10+12 = 38  
 
Greedy finds the global optimum only when 
1.  Greedy Choice: Local is correct without reconsideration 
2.  Optimal Substructure: Problem can be split into subproblems 

Optimal Greedy: Making change with the fewest number of coins 
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TSP Complexity 

•  No fast solution 
–  Knowing optimal tour through n cities doesn't 

seem to help much for n+1 cities 

 
[How many possible tours for n cities?] 

•  Extensive searching is the only 
provably correct algorithm 
–  Brute Force: O(n!) 

•  ~20 cities max 
•  20! = 2.4 x 1018 

–  Branch-and-Bound can sometimes help 
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TSP and NP-complete 
•  TSP is one of many extremely hard 

problems of the class NP-complete 
–  Extensive searching is the only way to 

find an exact solution 
–  Often have to settle for approx. solution 

•  WARNING:  Many biological problems are in this class 
–  Find a tour the visits every node once (Genome Assembly) 
–  Find the smallest set of vertices covering the edges (Essential Genes) 
–  Find the largest clique in the graph (Protein Complexes) 
–  Find the highest mutual information encoding scheme (Neurobiology) 
–  Find the best set of moves in tetris  
–  … 
–  http://en.wikipedia.org/wiki/List_of_NP-complete_problems 
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1.  Graph Searching 

2.  Assembly by analogy 

3.  Genome Assembly 
 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 
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 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 Model sequence reconstruction as a graph problem. 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 
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After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 
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3.  Genome Assembly 

 



Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C. elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Current Applications 
•  Novel genomes 

 
•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 



Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical contig coverage 
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Balls in Bins 1x 



Balls in Bins 2x 



Balls in Bins 3x 



Balls in Bins 4x 
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Genome Coverage Distribution 

Expect Poisson distribution on depth 
 Standard Deviation = sqrt(cov) 

 
This is the mathematically model => reality may be much worse 

 Double your coverage for diploid genomes 
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Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology.  

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage

Read Coverage
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Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 



Initial Contigs 
•  After simplification and correction, compress graph 

down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  



Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 
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Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 



Repetitive regions 
•  Over 50% of the human genome is repetitive 
 

39 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Scaffolding 
•  Initial contigs (aka unipaths, unitigs) terminate at 

–  Coverage gaps: especially extreme GC regions 
–  Conflicts: sequencing errors, repeat boundaries 

•  Iteratively resolve longest, ‘most unique’ contigs 
–  Both overlap graph and de Bruijn assemblers initially collapse 

repeats into single copies 
–  Uniqueness measured by a statistical test on coverage 



N50 size 
Def: 50% of the genome is in contigs larger than N50 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Assembly Algorithms 

ALLPATHS-LG SOAPdenovo Celera Assembler 

Broad’s assembler 
(Gnerre et al. 2011) 

 
De bruijn graph 

Short + PacBio (patching) 
 

Easy to run if you have 
compatible libraries 

  
http://www.broadinstitute.org/

software/allpaths-lg/blog/ 

BGI’s assembler 
(Li et al. 2010) 

 
De bruijn graph 

Short reads 
 

Most flexible, but requires a 
lot of tuning 

 
http://soap.genomics.org.cn/

soapdenovo.html 

JCVI’s assembler 
(Miller et al. 2008) 

 
Overlap graph 

Medium + Long reads 
 

Supports Illumina/454/PacBio 
Hybrid assemblies 

 
http://wgs-assembler.sf.net 



1.  Correction Pipeline 
1.  Map short reads (SR) to long reads (LR) 
2.  Trim LRs at coverage gaps 
3.  Compute consensus for each LR 

2.  Error corrected reads can be easily assembled, aligned 

PacBio Error Correction & Assembly 

Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Koren, S, Schatz, MC, Walenz, BP, Martin, J, Howard, J, Ganapathy, G, Wang, Z, Rasko, DA, 
McCombie, WR, Jarvis, ED, Phillippy, AM. (2012) Nature Biotechnology. doi:10.1038/nbt.2280 

http://wgs-assembler.sf.net 



E. Biggers, M. Schatz 

Assembly of Heterozygous Genomes 

Genome assemblers developed to assembly genomes 
with low rates of heterozygosity 
•   0-.1% (similar to human) 
 
Assembly becomes more complicated with higher rates 
 
Preprocess the reads to “smooth” the heterozygosity, 
assemble, and then restore variants 



•  Use assembly techniques to identify complex 
variations from short reads 
–  Improved power to find indels 
–  Trace candidate haplotypes sequences as paths 

through assembly graphs 

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz 

Scalpel: Haplotype Microassembly 

Ref:    ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
!
Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Sib:    ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(2): ...TCAGAACAGCTGGATGAGATCTTACC------CCGGGAGATTGTCTTTGCCCGGA...!
!

  6bp heterozygous indel at chr13:25280526 ATP12A 



Assembly Summary 
Graphs are ubiquitous in the world 

–  Pairwise searching is easy, finding features is hard 
 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  

–  Extensive error correction is the key to getting the best assembly possible 
from a given data set 



Genomics Challenges 
The foundations of genomics will continue to be 
observation, experimentation, and interpretation 
–  Technology will continue to push the frontier 
–  Measurements will be made digitally over large populations,    

at extremely high resolution, and for diverse applications 
 
 

Rise in Quantitative and Computational Demands 
 

1.  Experimental design: selection, collection & metadata 

2.  Observation: measurement, storage, transfer, computation 

3.  Integration: multiple samples, assays, analyses 

4.  Discovery: visualizing, interpreting, modeling 

Ultimately limited by the human capacity to execute 
extremely complex experiments and interpret results 
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